Enhancing mechanical properties of CoCrFeNiMn high-entropy alloy with carbon waste materials

Petr Kratochvíl¹, Jan Riedl¹, František Růžička¹, Tomáš Vrba¹, Jafar Fathi², Filip Průša¹

¹ University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
² Institute of Plasma Physics of the Czech Academy of Sciences, U Slovanky 2525/1a, 182 00 Prague, Czech Republic

E-mail: kratochs@vscht.cz

The CoCrFeNiMn alloy is known for excellent ductility and strain-hardening capacity; it suffers from the drawback of comparatively low yield strength. Efforts to enhance yield strength have been pursued either through thermo-mechanical processing or by introducing reinforcing particles. Conventional casting methods are generally used to achieve these improvements, although powder metallurgy offers an alternative approach. Beneficially, powder metallurgy – particularly mechanical milling – promotes the homogeneous distribution of reinforcement particles and significantly refines the microstructure of the material.

In this study, carbon nanomaterial waste was used to synthesize the carbide particles via mechanical alloying, which were subsequently incorporated into the CoCrFeNiMn alloy. Using the carbon waste derived from the microwave plasma gasification, the proposed method complies with the principles of a circular economy.

The synthesis of carbide particles was optimized according to the results of XRD and XRF analysis, with a focus on minimizing the contamination during the alloying process. The resulting carbides were uniformly distributed throughout the CoCrFeNiMn alloy, ultimately improving the mechanical properties such as hardness and compressive yield strength.

The authors want to acknowledge the Czech Science Foundation (project No. 24-10767S, Advanced high-entropy alloys reinforced by in-situ grown carbides formed from various types of nanostructured carbon precursors) for its financial support.