Electrochemical Realism in Single-Atom Catalysis

Igor A. Pašti

University of Belgrade – Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia; Serbian Academy of Sciences and Arts, Kneza Mihaila 35, 11000 Belgrade, Serbia

E-mail: igor@ffh.bg.ac.rs

Single-atom catalysts (SACs) represent a powerful and adaptable class of materials that hold

great promise across a broad spectrum of catalytic applications, particularly in

electrochemistry. By virtue of their atomically dispersed active sites, SACs offer a unique

platform for maximizing metal efficiency and precisely tuning catalytic behavior. Furthermore,

the structural simplicity of these active sites makes them highly amenable to theoretical

modeling.

Yet, one of the fundamental challenges in this field lies in the dynamic nature of the active site

under real electrochemical operating conditions. Variations in parameters such as pH and

electrode potential can significantly alter the structure and reactivity of these sites, effects

that are too often overlooked in theoretical treatments.

In this lecture, we introduce a conceptual and computational framework designed to bridge

this gap. By extending the concept of surface Pourbaix diagrams to the realm of SACs, we

provide a strategy for assessing their electrochemical stability and predicting their active

configurations under working conditions. This approach facilitates a deeper understanding of

catalytic function and supports the rational design of SACs with enhanced durability and

performance.

While the methodology is broadly applicable to various SAC systems, including those based

on metal oxides, carbon materials, or ceramic supports, we will focus on illustrative examples

involving two-dimensional materials. Ultimately, incorporating electrochemical stability into

the design paradigm offers a crucial step forward in the development of next-generation SACs

for energy conversion and other technologically relevant processes.