

Role of Cryogenic Cycle Design in Tailoring Mechanical Performance of D2 Tool Steel

Venu Yarasu, Bojan Podgornik, Marko Sedlacek, Venu Yarasu

Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana, Slovenia
E-mail: venu.yarasu@imt.si

Achieving a balance between hardness and fracture toughness in D2 tool steel continues to be a significant challenge, as improvements in hardness and wear can often lead to a decrease in toughness and fatigue resistance. This study clarifies the effects of deep cryogenic treatment (DCT) and cyclic deep cryogenic treatment (CDCT) protocols on this trade-off, with a particular focus on the significance of cycle design and reheating strategies. All samples were hardened at 1000°C for 30 minutes, then double tempered at 350°C. They were then subjected to conventional heat treatment (CHT), DCT, or CDCT with different cycle counts and durations: 2×2 hours, 4×1 hour, 8×30 minutes, 2×30 minutes, and 2×3 hours, with room temperature as the reheating strategy. Additional variants included reheating to -50°C as well as to 100°C. Hardness measurements were carried out using Rockwell and Vickers scales, while fracture toughness was assessed using circumferentially notched and fatigue pre-cracked tensile bar specimens. DCT and all CDCT variants increased hardness by 1-2 HRC compared to CHT, but toughness decreased by 11-54%. The CDCT-2×2 h variant reached 59.3 HRC with a toughness of 19.2 MPa·m^{1/2}, maintaining the hardness level of DCT while recovering about 3.3% of the toughness. Other CDCT methods achieved similar hardness levels but exhibited lower toughness than both DCT and CDCT 2×2 h. These results demonstrate that careful management of cryogenic cycling can reduce the hardness-toughness trade off, with CDCT 2×2 h offering a viable route for applications demanding both high wear resistance and improved fracture tolerance.

Keywords: coldwork tool steel, deep cryogenic treatment, cyclic treatment, hardness, fracture toughness, microstructure